
Generation with Dynamic Vocabulary

Yanting Liu1, Tao Ji2, Changzhi Sun1, Yuanbin Wu1, Xiaoling Wang1

1 School of Computer Science and Technology, East China Normal University
2 School of Computer Science, Fudan University

{ytliu@stu,ybwu@cs,xlwang@cs}.ecnu.edu.cn, {taoji,czsun}.cs@gmail.com

Abstract

We introduce a new dynamic vocabulary for

language models. It can involve arbitrary text

spans during generation. These text spans act

as basic generation bricks, akin to tokens in the

traditional static vocabularies. We show that,

the ability to generate multi-tokens atomically

improve both generation quality and efficiency

(compared to the standard language model, the

MAUVE metric is increased by 25%, the la-

tency is decreased by 20%). The dynamic vo-

cabulary can be deployed in a plug-and-play

way, thus is attractive for various downstream

applications. For example, we demonstrate that

dynamic vocabulary can be applied to differ-

ent domains in a training-free manner. It also

helps to generate reliable citations in question

answering tasks (substantially enhancing cita-

tion results without compromising answer ac-

curacy). 1

1 Introduction

Vocabulary, which defines basic bricks (tokens) for

composing new sentences, bridging different lan-

guages, and alleviating harmful generations, is es-

sential for language models (Stahlberg, 2020; Lam-

ple and Conneau, 2019; Liu et al., 2020; Kirk et al.,

2022; Weidinger et al., 2021). In modern develop-

ment, vocabularies are often obtained by training

tokenizers with a pre-defined vocabulary size on a

pre-defined corpus. Once built, they are kept un-

changed in the following model construction and

deployment (Sennrich et al., 2015; Radford et al.,

2019).

Though it is sufficient for basic language model-

ing, this static setting makes vocabulary be quietly

ignored in advanced generation tasks (Gao et al.,

2023; Rozière et al., 2024; Fried et al., 2023; Dagan

et al., 2024). For example, it can not be augmented

1Our source code is publicly available at
https://github.com/Maniyantingliu/generation_

with_dynamic_vocabulary
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Figure 1: Generation with dynamic vocabulary. The

model’s vocabulary dynamically changes based on the

input text, with phrases serving as basic blocks both for

input and output.

with new phrases for better adapting to an unseen

domain (Koehn and Knowles, 2017; Jin et al., 2020;

Chen et al., 2022) or verbatim reference text spans

for better inline evidence generation (Menick et al.,

2022; Gao et al., 2023). To bring vocabulary back

to the stage, it is natural to ask whether prior con-

straints posted by tokenization corpus and fixed

vocabulary size can be relaxed.

Here, we explore vocabulary in a new dynamic

setting. Instead of being a fixed token table, dy-

namic vocabulary is required to be able to include

arbitrary text spans on demand. This setup brings

new challenges to the language model. On the

input side, using a single embedding layer is no

longer feasible as the full table can not be enu-

merated. On the output side, the model needs a

stronger next-token predictor as the model allows

multiple oracles (tokenized to different granularity)

for a single string.

In this work, we build a dynamic vocabulary

by building a dynamic phrase encoder. Akin to

the embedding layer, the encoder maps arbitrary

text spans (called phrases) to the input space of
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language models. It can be trained with existing

language models in the same self-supervised man-

ner, despite that multiple tokens (in the original

static vocabulary) can be input or output at a single

step. Though the paradigm is almost unchanged,

supporting dynamic tokens needs non-trivial modi-

fication on data curation. Specifically, we find that,

to prevent the learned model from either biased

towards full static token outputs or towards full

new phrase outputs, it is crucial to make the two

properly interleaved in training samples. We also

show that the phrase encoder is hard to learn with-

out informative negative samples. We thus develop

two retrieval-based and generation-based methods

for accelerating the learning of the dynamic phrase

encoder.

The obtained dynamic vocabulary can be de-

ployed in the way of plug-and-play: the underly-

ing architecture (and backbone parameters) of lan-

guage models are kept, and those new on-demand

phrases can be used as ordinary tokens during the

generation. To evaluate the dynamic vocabulary,

we investigate three exemplar applications, includ-

ing basic language modeling, domain adaptation,

and generating citations for question answering.

Results show that the new flexibility of vocabulary

both improve basic generation performances (e.g.,

stronger fluency and diversity scores on WikiText-

103 (Merity et al., 2016) with lower latency) and

provide a new tool to handle advanced language

modeling tasks (e.g., generating more accurate ci-

tations with QA scores also increased).

2 The Approach

2.1 Problem Definition

Given a language model LM, denote V as its vo-

cabulary, and x = x1, x2, ..., xn as a tokenized

sentence according to V (xi is a token in V ). A

dynamic vocabulary V ′ = V ∪ P augments V
with arbitrary phrases (text spans) P . The same

sentence x now can be tokenized to a different se-

quence x′1, x
′
2, ..., x

′
m, where x′i ∈ V ′. The usage

of dynamic vocabulary V ′ is identical to the vanilla

static vocabulary V : the language model LM can

accept any token in V ′ as input and choose output

tokens from V ′.

Supporting arbitrary phrase set P and integrating

V ′ with language models are two cruxes to imple-

ment dynamic vocabularies. For the first one, it is

possible to support new phrases by fine-tuning the

language model with V ′, but it requires updating

the model when P changes which can hardly be

used in real applications. We will also see that,

for the second crux, simply replacing V with V ′

fails to learn the language model due to the decod-

ing ambiguity introduced by P . We elaborate our

solutions in the following sections.

2.2 Dynamic Phrase Encoder

Instead of fine-tuning the language model for ev-

ery possible P to support arbitrary phrase sets,

we build a parametric encoder for those dynamic

phrases. Once the encoder is learned, it can be

deployed with the model.

Specifically, the dynamic phrase encoder is built

with a causal Transformer. To get the represen-

tation of a phrase p ∈ P , it first tokenizes p =
w1, w2, ..., ws according to the static vocabulary V ,

and after going through several causal Transformer

layers followed by an MLP, the hidden vector of

the last token hs is the vector representation of p.

The above setting is different from existing work

in three ways (Lan et al., 2023; Teehan et al., 2024).

First, it is common to use a Transformer encoder

(full attention) to build the phrase encoder, while

we apply a Transformer decoder (causal masking).

The choice is mainly guided by efficient negative

sampling (see Section 2.4 for further details).

Second, the dynamic phrase encoder adopts the

same tokenizer of LM (which is used to build the

static vocabulary V ). Sharing tokenizers means

the language model doesn’t need to load additional

vocabularies and tokenizers during inference. 2

Third, to further unify the new phrase encoder

and the LM, we use a non-contextualized repre-

sentation of phrases, which makes the new phrases

more like the original tokens in V . Contextualized

representations can also be used (Joshi et al., 2020;

Lan et al., 2023), but it means that, besides the

phrases themselves, the contexts of them should

also be included in the dynamic vocabulary.

To summarize, the considerations above aim to

make the dynamic phrase encoder align with the

embedding layer as much as possible: both of them

map tokens (phrases) into the input space of the

language model, one by lookup operations, and

another by running the phrase encoder.

2As a comparison, the phrase encoder in CoG (Lan et al.,
2023) is BERT, and one should load both the BERT vocabulary
and GPT-2 vocabulary when testing.



2.3 Inference with Dynamic Vocabulary

In testing time, the new dynamic vocabulary can

be used as the ordinary vocabulary. We take an

auto-regressive language model LM as an exam-

ple. For a set of new phrases P 3, we run the

learned dynamic phrase encoder to get representa-

tions of its phrases, denoted by a matrix P. The

language model’s input and output embedding ma-

trices Wemb,in,Wemb,out are expanded with these

embeddings,

W
′
emb,in = [Wemb,in,P],

W
′
emb,out = [Wemb,out,P].

At each auto-regressive decoding step, the lan-

guage model LM outputs a hidden vector h<i rep-

resenting current prefix x′<i, the probability of next

token is

P(x′i = k|x′<i) = Z−1 exp(h<i · e
k
out) (1)

Z =
∑

k′∈V

exp(h<i · e
k′

out) +
∑

k′∈P

exp(h<i · e
k′

out),

where e
k
out is the k-th column of W′

emb,out. When

the i-th token is selected, no matter whether it is

a token in V or a phrase in P , its embedding is

looked up from W
′
emb,in as the input of the next

decoding step. 4

2.4 Training with Dynamic Vocabulary

Building Samples To train the dynamic phrase

encoder, we follow the same self-supervision

regime as the training of language models. The

key difference here is that, besides tokens in V , we

need to organize phrases (text spans) in a training

sample for learning the phrase encoder. In partic-

ular, 1) the diversity of training-time in-domain

phrases would influence the generalization of the

learned phrase encoder, and 2) the distribution of

phrases in samples would influence how the lan-

guage model switches between tokens and phrases.

For building phrases, we test the following two

methods.

3The phrase set P can change at each decoding step. Here,
for simplicity, we assume it is kept unchanged during testing,
and we can run the dynamic phrase encoder only once.

4When decoding a phrase, another option adopted by (Joshi
et al., 2020; Lan et al., 2023) is to unfold tokens in the phrase
and input them individually. Despite the inconsistency be-
tween input and output vocabulary (our experiments indicate
a negative influence on performances), this setting may also
slow the decoding speed (or generate shorter texts given a
fixed length budget) even if it can predict a phrase.

•ªrealº phrases. We can use classical chunking

algorithms to recognize phrases in a sentence.

The resulting phrases can be recognized as single

grammatical units or as common word colloca-

tions. Here, we follow Lan et al. (2023) to use an

unsupervised chunker forward maximum match-

ing (FMM). Basically, FMM recognizes phrases

that frequently appear in a support corpus and as

long as possible. The algorithm (and other exter-

nal chunkers) may need additional time costs to

compile samples (e.g., in our experiments, FMM

needs ≈ 15 hours to build its phrase table).

• Ngrams. Another candidate set of phrases is

ngrams, which is much simpler to build than

involving external chunkers. Though a ngram

may not carry a meaning, it could be a stronger

learning target for the phrase encoder: the con-

nections between ngrams and its contexts are

more complex than ªrealº phrases (as they usu-

ally follow the simple patterns which are used

to extract them). We study two settings, ngrams

of words and ngrams of tokens (denoted by N-

words and N-ids respectively). Taking N-words

as an example, a word tokenizer 5 first recognizes

words in a sentence, then randomly sequences of

2-5 consecutive words are grouped into phrases.

Next, given a sentence and a set of candidate

phrases, we need to determine the distribution of

phrases. One may build samples with full ngrams

phrases, but they could be both hard to learn (the

learning ignores the prior knowledge of original

vocabulary V in the model), and hard to apply (the

setting is rare in applications). In our practice, to

accelerate learning and prevent unnecessary data

bias, it is crucial to make phrases and tokens prop-

erly interleaved in training samples. Therefore, we

control the interval between two phrases to be at

least five tokens.

Negative Phrases After building training sam-

ples, we can directly optimize the log-probability

defined in Equation 1, which requires the correct

next token in V ′ = V ∪ P has the largest logit

than other tokens in V and P (negative tokens).

However, the number of phrases in the training

set would be large, and it is prohibitive to include

all of them in the loss function. 6 A common

5N-words uses the word tokenizer in the NLTK toolkit,
and N-ids uses GPT-2’s tokenizer.

6It is worth noting that all training time phrases are dropped
after learning the encoder. For ngram phrases (N-words and
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Figure 2: The overall architecture of our proposed dynamic vocabulary. During training, there are four sources of
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the model input layer, phrases are treated as a basic brick without splitting into tokens.

workaround is to include only in-batch and pre-

batch phrases in P (Gao et al., 2021). Unfortu-

nately, it doesn’t help learning the phrase encoder.

Specifically, we find that the model struggles to

correctly transit from a phrase token to an ordinary

token and vice versa. More concretely, when pre-

dicting a phrase p = w1, w2, ..., ws, the dynamic

phrase encoder has trouble on distinguish p from

1) phrases which are prefixes of that phrase (e.g.,

w1w2 and w1w2w3) and 2) phrases which have p as

their prefix (e.g., pws+1 and pws+1ws+2). There-

fore, we also manually add the above phrases to P
in each batch (we call them informative negative

phrases).

For the first type, we can simply enumerate all

prefixes of p. For the second type, we develop

retrieval-based and generation-based methods for

getting successor tokens of p,

• retrieval-based continuation finds appearances of

p in a support corpus and takes p and its suc-

cessor tokens there as negative phrases (corpus-

retrieval). 7 One simplification is only consid-

ering p’s successor tokens in the current sample

(self-retrieval).

• generation-based continuation, instead of search-

N-ids), phrases are built on the fly in the batching process, and
there is no global training time P .

7Due to the time complexity of matching phrases, we only
adopt corpus-retrieval when phrases are obtained by FMM,
and keep the efficiency of Ngram phrases.

ing corpus, tries to get synthetic negative phrases

by employing a language model. 8 The model is

prompted with p and the following generations

are included in P (generation).

Finally, regarding getting embeddings of these

informative negative phrases, recall that we adopt

an causal Transformer as the phrase encoder and

use the hidden state of the final token to represent

p, the embeddings of negative phrases could be

efficiently obtained by feeding the longest phrase

to the encoder.

Loss Functions The first part of the training loss

is defined by Equation 1 (with negative samples

added to P ), which we denote by Lp. We also

add a special setting of Lp in the loss (denoted by

Lt), in which P = ∅ (i.e., the vanilla language

modeling). It helps to maintain generation ability

with the static vocabulary V .

We can further align the above two settings by re-

quiring their next token distributions at each token

position are close (measured by KL divergence).

Concretely, given a sentence x, recall that (Section

2.1) the oracle of training Lp is x′1, x
′
2, ..., x

′
m, the

oracle of training Lt is x1, x2, ..., xn. Assume a

function σ which aligns x′i to a token position in

Lt’s oracle: if x′i is a token in V , it is mapped to

the same token position, otherwise, x′i is mapped

8Here we use GPT-2, stronger models can also be applied.



to its last token’s position.

Lkl =
1

m

m∑

i=0

KL(P(x′i|x
′
<i)||P(xσ(x′

i
)|x<σ(x′

i
))).

The final loss function is L = Lp + Lt + Lkl.

3 Experiments

3.1 Setups

Configurations For a fair comparison with base-

lines, we use GPT-2 (Radford et al., 2019) to initial-

ize both the language model and dynamic phrase

encoder. To collect phrases for each test sample,

k related documents are retrieved by the semantic

matching model, DPR (Karpukhin et al., 2020) and

the vector search toolkit, FAISS (Johnson et al.,

2019). In our paper, the value k is set to 32.

We experiment with several negative sampling

and sample-building methods and set N-words with

ªself-retrieval + generationº as default. Besides, we

initialize the language model with two models of

different scales, GPT-2 and Tinyllama (Zhang et al.,

2024), to verify the effectiveness of our proposed

method. We employ full-parameter fine tuning for

GPT-2 and LoRA (Hu et al., 2021) for Tinyllama.

Please refer to Appendix B for more details.

Baselines We compare the proposed method with

the following state-of-the-art models as baselines:

Transformer (Vaswani et al., 2023) is the stan-

dard token-level language model. We fine-tune the

pre-trained GPT2 in our experiments.

KNN-LMs (Khandelwal et al., 2020) extends

a pre-trained neural language model by linearly

interpolating it with a k-nearest neighbors(KNN)

model.

RETRO (Borgeaud et al., 2022) is a retrieval-

enhanced transformer that combines a frozen Bert

retriever, a differentiable encoder, and a chunked

cross-attention mechanism.

CoG (Lan et al., 2023) decomposes text genera-

tion into a series of copy-and-paste operations. It

first retrieves semantically relevant documents and

then considers all n-grams within them as candidate

phrases 9.

MWT (Gee et al., 2023) propose to expand vo-

cabulary with top-k frequent n-grams in support

9CoG adopts a two-stage search strategy (document re-
trieval followed by phrase extraction) while CoG-2 (Cao et al.,
2024) generates text directly through phrase retrieval. How-
ever, CoG-2 fails to provide any code, thus precluding any
comparative analysis.

corpus. Rather than expanding vocabulary dynami-

cally, it still focuses on building a static vocabulary.

Metrics We use four automatic evaluation met-

rics to measure the quality of the generated texts

(Lan et al., 2023; Cao et al., 2024),: (i) MAUVE

(Pillutla et al., 2021) measures the distribution simi-

larity between the reference text and generated text;

(ii) Rep-n (Welleck et al., 2019) reflects the repeti-

tion at different n-gram levels in the generated text;

(iii) Diversity (Welleck et al., 2019) evaluates the

variety of generated content; and (iv) Perplexity

measure the difficulty in predicting the next word

in a sequence. In addition, we also compare the

average time cost of different methods to decode a

continuation consisting of 128 tokens given a prefix

of 32 tokens, referred to as latency. The details for

these metrics can be found in Appendix C

We investigate three applications: basic lan-

guage modeling, domain adaptation, and gener-

ating citations for question answering.

3.2 Basic Language Modeling

We use GPT-2 and WikiText-103 (Merity et al.,

2016) for evaluating open-ended language genera-

tion. For each test sample, we provide the first 32
tokens as a context prefix, and both the baselines

and our model will generate the subsequent 128

tokens (tokens are in GPT-2’s original vocabulary).

The results are listed in Table 1. We find that,

• Regarding generation quality, language models

with dynamic vocabulary can outperform stan-

dard Transformer with 5.22% MAUVE score

(better fluency). Meanwhile, our model achieves

47.44% diversity, which is much better than other

baselines.

• Regarding generation efficiency, dynamic vocab-

ulary achieves the best latency. The reason is that

a single phrase contains several tokens, which

translates to fewer decoding steps for a given

decoding length budget.

• the perplexity of dynamic vocabulary (our model

and CoG) is higher than that of the Transformer.

This discrepancy could potentially stem from the

fact that during testing, the input prefixes are

strictly composed of tokens from a fixed vocabu-

lary, whereas the model is not subjected to such

constraints during training, which results in an in-

consistency between the training and testing data

distributions, potentially leading to the observed

difference in perplexity scores.



Model MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 ↓ Diversity ↑ Latency(s)↓ PPL ↓

Transformer 20.47 41.96 36.82 33.74 24.30 1.10 3.60

RETRO 19.59 43.78 38.58 35.35 22.33 4.43 3.96

KMM-LM∗ 19.92 43.79 38.76 35.69 22.13 10.36 3.48

CoG 21.61 34.77 30.67 28.35 32.41 1.04 7.89

MWT 24.74 33.78 26.72 22.76 37.48 1.13 5.58

Ours 25.69 27.77 20.80 17.08 47.44 0.99 8.03

Table 1: The automatic evaluation on the test set of WikiText-103. ∗ indicates that we directly utilize the results from

the CoG paper for KNN-LM due to limited GPU memory. Additionally, our method retrieves only 32 documents

for phrase segments during evaluation, whereas CoG retrieves 1024. Gee et al. (2023) apply MWT to encoder-only

model but we implement MWT with GPT-2.

Ours versus (∗) Better No Prefer Worse

Overall Evaluation
Transformer 0.57 0.22 0.21
MWT 0.55 0.21 0.24
CoG 0.53 0.22 0.25

Comparasion in * aspect
Fluency 0.41 0.31 0.28
Coherence 0.44 0.28 0.28
Informativeness 0.56 0.18 0.26
Grammar 0.32 0.43 0.25

Table 2: Overall human evaluation on WikiText-103 and

detailed comparison with GPT-2 in the four aspects. In

the overall evaluation, we regard the four aspects as a

whole and hence there is a single score. ªBetterº repre-

sents that our proposed model’s output is superior; ªNo

preferº indicates that the performance is comparable;

and ªworseº denotes that our model’s output is inferior.

We also evaluate the generation results under nu-

cleus sampling and attempt real-time adaptability.

The details are located in Appendix A, D separately.

Moreover, the analysis of memory and computa-

tional resources occupation during inference can

be found in Appendix E.

Human Evaluation To gain further assessment,

we also run human evaluation on a random sample

of 100 generations. For each test sample prefix,

the annotators are given two continuations gener-

ated by the baseline and our model respectively

in random order. Annotators are asked to choose

which one is better (in terms of fluency, coherence,

informativeness, and grammar). When annotators

make different decisions on the same sample, they

will discuss and make the final decision. We regard

the four aspects as a whole in the overall evaluation

and also score in each aspect. As shown in Table 2,

dynamic vocabulary outperforms the Transformer

with better cases of 57 and 21 cases of slight in-

feriority and wins more cases in all four aspects,

especially coherence and informativeness. The re-

sults are consistent with MAUVE, which shows

that the model with dynamic vocabulary possesses

a stronger generation capability and the outputs

from our method often have a tighter connection

with the preceding text.

We also employ GPT-4 (Achiam et al., 2023)

for further assessment. Detailed implementations

and prompts are in Appendix G. The results are

consistent with the aforementioned evaluations.

Case Study To provide more proof of the effec-

tiveness of our proposed model and the quality of

its generation, we conduct some case studies and

compare texts generated by our proposed model

and GPT-2. As illustrated in Figure 3, the contin-

uation of our model consists of both tokens and

phrases (such as the phrase ªsignificantly modifiedº

highlighted in blue at the first decoding step) and

its content embodies further details about the mod-

ernization of the ship, including the equipment of

a pair of torpedo tubes, their positions, and the

maximum load. While GPT-2 repeatedly generates

completely identical sentences, which is parallel

with its low diversity score of 24.30%. More cases

are provided in Appendix F.

Sequence Compression Sequence compression

reflects the length of text that a model can accom-

modate within the same window size. Following

Dagan et al. (2024), we measure the two compres-

sion metrics, normalized sequence length (NSL)

and the average number of Bytes per Token. NSL

is the token count of a tokenized sequence from the

tokenizer T . Given that our model does not incor-

porate a genuine tokenizer, we take the outputs of

each decoding step as the tokenization results. We

report scores from tokenizers of GPT-2 and MWT

on our model’s outputs.

As shown in the table 3, our proposed model



During the ships' modernization during the 1930s, their forward superstructures were enlarged with multiple platforms added 

to their tripod foremasts. Both ships were also

significantly modified to accommodate the addition of a new funnel. The ships were also equipped with a pair of torpedo 

tubes, one on each broadside, with twin torpedoes. The torpedo tubes were significantly modified to allow the ships to carry a 

maximum of 12 metric tons ( 12 metric tons ) of torpedoes. The ships were also equipped with a pair of torpedo tubes, one on 

each broadside, for additional torpedoes.

equipped with a pair of torpedo tubes. The ship was also equipped with a pair of machine guns. The ship was also equipped 

with a pair of torpedo tubes. The ship was also equipped with a pair of machine guns. The ship was also equipped with a pair 

of torpedo tubes. The ship was also equipped with a pair of machine guns. The ship was also equipped with a pair of machine 

guns.

Case Input

The Generation of our Proposed Model

The Generation of GPT-2

Figure 3: A comparison between texts generated by our proposed model and GPT-2. The tokens highlighted in blue

are from dynamic vocabulary while others are from fixed token ones.

Model NLS ↓ UTF-8 Bytes ↑

Transformer 127.72 4.28

MWT 114.84 4.77

Ours 101.38 5.54

Table 3: Compression on WikiText-103. Since CoG,

KNN-LM, and RETRO do not modify the model’s tok-

enizer or input vocabulary, the compression results are

the same with the Transformer.

holds the highest information content per token,

averaging 101.38 tokens or phrases per sequence

and 5.54 UTF-8 bytes per token, and necessitates

fewer tokens or phrases to generate the identical

text. In other words, with an equivalent number

of context window sizes, our method encodes a

more substantial amount of text. This is a natural

consequence of the fact that the dynamically added

phrases contain more tokens.

Scale Up For a comprehensive evaluation of our

method, we deploy the dynamic vocabulary with

TinyLlama (Zhang et al., 2024), which is a 1.1B

LLaMA-style backbone, to assess the performance

as the scale of LM increases. As shown in table 4,

our proposed model outperforms Standard TinyL-

lama with 1.09% MAUVE and 21.46 % Diversity,

which indicates the better fluency and higher diver-

sity of generation from our method. The results

are consistent with the experimental conclusion in

section 3.2 and the preliminary findings indicate

the effectiveness of our approach on larger models.

3.3 The Influence of Negative Phrases

As discussed, we have designed several negative

sampling strategies and explored their influence on

Model MAUVE ↑ Diversity ↑ Latency(s)↓ PPL ↓

TinyLlama 20.64 32.53 4.92 5.20

Ours 22.54 53.99 3.82 12.88

Table 4: The automatic evaluation on the test set of

WikiText-103. In this experiment, we use GPT-2 and

TinyLlama to initialize the dynamic phrase encoder and

the language model, respectively. We utilize parameter-

efficient fine-tuning approach-LoRA on TinyLlama and

set r, alpha, and dropout as 8, 32, 0.1, separately.

the generation. As reported in table 5, we have

observed that the choice of the negative phrases

method significantly impacts the fluency and qual-

ity of the generated text.

• Specifically, compared with the remaining nega-

tive sampling methods, the vanilla in-batch and

pre-batch negative sampling methods result in a

markedly higher PPL (approximately 10 points

and 3 points higher in the FMM setting) 10. The

results indicate that strong negative phrases are

crucial for the model’s generation quality.

• Regarding generation-based and retrieval-based

negative phrases, there is no significant perfor-

mance difference. However, these methods take

additional time costs compared to self-retrieval,

as the generation-based approach necessitates

continuous generations for the provided phrases,

and corpus-retrieval requires retrieving from the

10We have observed that there is a positive correlation be-
tween Diversity and PPL, which means that the higher the
Diversity, the higher the PPL values tend to be as well. We
believe that this phenomenon occurs because the model tends
to increase the probability of repeating previous sentences (Xu
et al., 2022), leading to a lower PPL and Diversity.



Negative Samples MAUVE ↑ Diversity ↑ PPL ↓

FMM

in-batch 21.95 57.92 16.48

in-batch + pre-batch 22.28 48.91 9.02

generation 22.87 42.19 6.34

corpus-retrieval 21.98 41.32 6.40

self-retrieval 21.65 41.67 6.39

self-retrieval + generation 21.25 42.40 6.62

N-words

in-batch 24.67 64.15 17.01

in-batch + pre-batch 23.98 61.80 14.60

generation 24.99 49.03 8.51

self-retrieval 24.83 48.46 8.13

self-retrieval + generation 25.69 47.44 8.03

N-ids

in-batch 23.96 68.44 21.53

in-batch + pre-batch 23.66 61.16 14.83

generation 23.91 46.40 8.07

self-retrieval 23.64 48.38 8.36

self-retrieval + generation 24.85 47.08 8.21

Table 5: The automatic evaluation on different negative

samples and training samples. During testing, each

phrase is constrained to 2-8 tokens. Here, the pre-batch

method contains prefixes of gold phrases as well and

the number of preceding batches is set to 1.

related corpus. Self-retrieval method may be op-

timal in this perspective.

• Furthermore, among all negative phrases sam-

pling strategies, the perplexity of the FMM set-

ting is consistently lower than that of the N-words

and N-ids ones. This phenomenon occurs per-

haps because phrases obtained with FMM are

relatively meaningful. Interestingly, the average

MAUVE values for the N-words and N-ids are

approximately 1% higher than that of FMM. The

observation indicates that the way to construct

train samples has a substantial influence on the

text quality.

3.4 Domain Adaptation

The plug-and-play property of the dynamic phrase

encoder motivates us to explore the performance

on a different domain in a training-free man-

ner. Specifically, we investigate the model trained

on the WikiText-103 dataset while tested on the

LawMT (Koehn and Knowles, 2017) dataset which

is an English-German translation dataset in the le-

gal domain. Following (He et al., 2021a; Alon et al.,

2022; Lan et al., 2023), we treat the English por-

tion of this dataset as a retrieval corpus. As shown

in table 6, only equipped with dynamic vocabu-

lary extracted on the target domain, the model can

outperform the transformer fine-tuned on LawMT

datasets (3.29% on MAUVE and 2.78% Diversity).

Model MAUVE ↑ Diversity ↑ Latency(s)↓ PPL ↓

Transformer w/o FT 22.97 72.12 1.03 3.21

Transformer w/ FT 23.06 80.21 1.02 3.54

RETRO 19.07 72.68 5.72 3.78

KMM-LM∗ 23.32 19.85 - -

CoG 19.46 81.93 1.39 6.74

MWT 24.55 77.45 1.10 5.38

Ours 26.35 82.99 1.09 7.61

Table 6: The automatic evaluation on Law-MT. In this

experiment, we retrieve 512 documents for each sample.

To guarantee a fair comparison, we also evaluate the

performance of the Transformer model both with and

without further fine-tuning on LawMT.

Thus, the learned phrase encoder could be an ef-

ficient tool for lightweight domain generalization.

We also calculate the sequence compression ratio

and conduct GPT-4 Evaluation. The details are in

Appendix G, H.

3.5 Generation with Citations

Considering that we can develop a dynamic vo-

cabulary tailored to our needs, and recognizing

that each potential phrase is uniquely associated

with a specific document, our proposed model is

designed to be effectively employed in the genera-

tion of citations. The task is formalized as follows:

given a query q and a few documents D, the model

is required to generate an answer with embedded

in-line citations of documents in D. We run the

experiments on the long-form QA dataset, ASQA

(Stelmakh et al., 2022) further processed by Gao

et al. (2023), where candidate documents for each

query have already been retrieved. We first label

each document with a unique ID marker starting

from 1 and then extract phrases from documents

with the corresponding marker, such as ªdynamic

vocabulary[1]º from the document with mark ª[1]º.

Therefore, phrases in the generated answers could

reflect the citation process.

Results We evaluate the generated results from

two perspectives: QA accuracy and citation qual-

ity. For QA accuracy, we evaluate Exact-Match,

F1-score, and Rouge-L and we calculate Recall

and Precision in terms of citation quality. Refer

to their detailed definitions provided in Gao et al.

(2023) for an in-depth understanding. Following

(Gao et al., 2023), we provide the model with the

k documents and leverage in-context learning to

instruct it to cite accordingly.

The results demonstrate a significant boost in the

citation capability of our model with citation recall



Model(shot-1) Citation_rec Citation_prec QA-EM QA-F1 Rouge-L

TinyLlama 0.62 1.54 6.00 8.78 25.43

ours

w/ n-grams 9.76 29.30 8.88 11.83 30.06

w/ parsing 2.94 9.17 9.87 13.06 30.16

w/o phrases 0.20 0.44 8.81 11.81 29.60

Table 7: The automatic evaluation on ASQA. In this experiment, we opt for TinyLlama as the language model to

imbue the model with in-context learning capabilities. All baseline models are configured in a one-shot setting, with

the number of candidate documents set to 3. Parsing denotes that we use Stanza parser (Qi et al., 2020) to extract

phrases from candidate documents, which ensures that the phrases possess a relatively complete and well-defined

meaning.

and precision surpassing TinyLlama baseline by

9.14% and 27.76%, respectively. However, phrase

collections have a significant impact on the cita-

tion results. The phenomenon occurs potentially

due to the extensive collection of phrases by the

n-grams approach and thus more suitable phrases

could align with the generated text.

Furthermore, our model exhibits a superior QA

performance with an EM score of 9.87% and an F1

of 13.06%. Due to our model’s further fine-tuning

on WikiText-103 and the property that responding

to a query in ASQA necessitates Wikipedia-based

information, our model’s QA performance is ex-

pected to be excellent with the absence of phrases

(i.e., the setting of ours w/o phrases).

4 Related Work

Tokenizer Tokenizer is an essential component

of language models (Dagan et al., 2024; Mielke

et al., 2021), responsible for transforming raw text

into a sequence of tokens. Byte-Pair Encoding

(BPE) is commonly used to build tokenizer (Rad-

ford et al., 2019; Liu et al., 2019; Lewis et al., 2019;

He et al., 2021b) and, there exist other tokeniza-

tion algorithms, such as Unigram (Kudo, 2018)

and WordPiece tokenization used in BERT (De-

vlin et al., 2019). However, these tokenizations are

limited to subwords or whole words. Kumar and

Thawani (2022) and Gee et al. (2023) generalize

the BPE algorithm to multi-words and multi-tokens

separately. Whereas these approaches necessitate

training the tokenizer and remain static.

CoG (Lan et al., 2023) and CoG-2 (Cao et al.,

2024) both employ a ªdynamic vocabularyº by ex-

panding vocabulary with phrases extracted from re-

lated documents. However, these two methods only

employ dynamic vocabulary in the output module

and split phrases into tokens in the input. In this

paper, we treated phrases as atomic units same as

tokens, and dynamically expanded vocabulary both

in input and output layers.

Sequence Compression Language models are

constrained by the limited length of input se-

quences they can process. Increasing this length

results in a prohibitive computational overhead. A

series of techniques have been proposed to com-

press sentences into one or a few tokens or latent

representations (Qin and Van Durme, 2023; Cheva-

lier et al., 2023; Bulatov et al., 2022; Mu et al.,

2024). MWT (Gee et al., 2023) enhances compres-

sion by retraining the tokenizer, incorporating the

most frequent n-grams of a support corpus into the

vocabulary. In contrast to the static vocabulary of

MWT, our method dynamically adapts the model’s

vocabulary to the input text, resulting in a more

flexible and efficient adaptation.

5 Conclusion

In this paper, we propose a novel approach for dy-

namically adjusting the model’s vocabulary based

on the input text. It is a plug-and-play approach that

can be simultaneously performed with pre-training

tasks. We investigated standard language modeling,

domain adaptation, and citation generation, and

discussed the impact of different training samples

and negative phrase construction methods on the

quality of generated text. Our experimental results

show that our proposed model can rapidly generate

high-quality, high-compression text compared to

baselines.

Limitations

In this paper, we propose a method to dynami-

cally expand the vocabulary based on the input text.

While our approach can improve generation speed



and increase the effective length of the generated

text, our model does not modify the underlying

tokenizer. As a result, it cannot reduce the token

numbers for known input information like prompts

or questions. The dynamic vocabulary is, therefore,

limited to the subsequent content generated by the

model.

Furthermore, to obtain embedding representa-

tions for phrases, a dynamic phrase encoder is nec-

essary. This encoder has a more intricate structure

compared to the model’s linear embedding layer

and requires additional memory allocation during

implementation.

Lastly, our method relies on external techniques,

such as a retriever, to obtain relevant documents

and extract phrases from them during testing. This

adds complexity to the preparation process.
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A Full Results

We show the full results of our experiments in Ta-

bles 8, 9, 10, 11.

B More Implementation Details

The training of our proposed model was carried

out on two NVIDIA RTX 3090 GPUs, each with

24GB of memory, over a total of 400,000 training

steps. During the training process, we implemented

a gradient accumulation step of 2, with a batch size

of 4. We also used a linear learning rate schedule

with a warmup, alongside the AdamW optimizer

(Loshchilov and Hutter, 2019), maintaining the de-

fault beta values. The initial learning rate was set

at 5e-5. Additionally, we applied gradient clipping

with a clipping value of 1.0 to ensure training sta-

bility. When conducting nucleus sampling, we set

the p to 0.95.

For each test sample, we retrieve top-k docu-

ments that have similar topics with the sample pre-

fix and extract candidate phrases to construct the

dynamic vocabulary. In our experiments, the value

of k is set to 32 by default and the candidate phrase

is restrained to the length of 2-8 tokens.

We initialize the language model with two mod-

els of different scales, GPT-2 and Tinyllama (Zhang

et al., 2024), to verify the effectiveness of our pro-

posed method. We employ full-parameter fine-

tuning for GPT-2 and LoRA fine-tuning (Hu et al.,

2021) for Tinyllama. When fine-tuning TinyLlama

with LoRA, we set r as 8 and alpha as 32.

The experiments of MWT in paper (Gee et al.,

2023) are conducted on encoder-only models such

as BERT (Devlin et al., 2019) and RoBERTa (Liu

et al., 2019). In our implementation, we modify the

foundation model to GPT2 (Radford et al., 2019),

a decoder-only model, and add the top 10000 most

frequent 2-grams to the original GPT-2 Tokenizer.

The embeddings for newly added words are initial-

ized using Fast Vocabulary Transfer (FVT) (Gee

et al., 2022). MWT is trained for a total of 150000

steps on the WikiText103 dataset.

C More Details of Automatic Evaluation

In this section, we provide a detailed introduction

to the automatic evaluation metrics.

• MAUVE. Pillutla et al. (2021) measures how

closely the token distribution in the generated

text matches that in human-written text across

the entire test set. We follow prior work and

leverage the GPT2-large model to generate

the scores. In our implementation, the scaling

factor is set as 2.0.

• Rep-n. Welleck et al. (2019) measures the

repetition at different n-gram levels in the

generated text. It is defined as 100 × (1.0 −
|uniquen−gram(x)|
|totaln−gram(x)| ). Higher Rep-n represents

the severe degeneration problem in genera-

tions.

• Diversity. Welleck et al. (2019) evaluates the

variety of generated content, which is formu-

lated as
∏4

n=2(1−
Rep−n
100 ). More informative

generations get higher Diversity scores.

• Perplexity is a measure of the uncertainty or

difficulty in predicting the next word in a se-

quence. A lower perplexity score indicates

that the model is more certain about its predic-

tions.

D Real-time Adaptability

We have attempted to verify the efficiency when the

proposed model adapts its vocabulary in real-time

scenarios where new phrases continuously emerge.

We give a simulated experiment with dynamic vo-

cabulary updates in real time. Specifically, we first

use a document retriever to retrieve top-k-related

documents for each given prefix. Then, the candi-

date phrases P are collected from these documents

for selection. Unlike the full off-line computation

(the setting in section 3.2), we gradually expand the

vocabulary during the model’s generation. Specif-

ically, we added 5% of the phrases from P to the

vocabulary for every 10 tokens generated.

Obviously, the computational and memory costs

are linear to the size of on-demand vocabularies,

which we believe is reasonable since 1) the en-

coding of phrases could be computed in the way

of parallel and off-line; 2) the prediction over the

new phrase table could also be paralleled using the

tilling trick (Milakov and Gimelshein, 2018); 3)

in practice, the size of dynamic vocabulary could

be controlled by dynamically off-loading unused

phrases. As shown in table 12, the increase in la-

tency can be successfully controlled.

E Memory and computational resources

We control the number of phrases in dynamic vo-

cabulary to illustrate its impact on total FLOPs



Model Decoding MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 ↓ Diversity ↑ Latency(s)↓ PPL ↓

Transformer
greedy 20.47 41.96 36.82 33.74 24.30 1.10 3.60

nucleus 25.05 5.40 1.44 0.51 92.76 1.15 31.01

RETRO
greedy 19.59 43.78 38.58 35.35 22.33 4.43 3.96

nucleus 20.77 5.83 1.91 0.83 91.61 5.43 39.74

KMM-LM∗ greedy 19.92 43.79 38.76 35.69 22.13 10.36 3.48

nucleus 22.50 3.33 0.69 0.21 95.8 10.42 78.01

CoG
greedy 21.61 34.77 30.67 28.35 32.41 1.04 7.89

nucleus 25.96 5.43 1.53 0.67 92.50 1.06 36.66

GPT+MWT
greedy 24.74 33.78 26.72 22.76 37.48 1.13 5.58

nucleus 25.66 4.18 0.90 0.29 94.68 1.17 55.02

Ours
greedy 25.69 27.77 20.80 17.08 47.44 0.99 8.03

nucleus 24.34 4.59 1.03 0.28 94.16 1.00 51.38

Table 8: The automatic evaluation on the test set of WikiText-103. ∗ denotes that the results are obtained from CoG

(Lan et al., 2023) paper. For each sample, the first 32 tokens are provided and models are tasked with generating the

subsequent 128 tokens. We can observe that our proposed model achieves the best scores in most metrics.

Negative Samples Decoding MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 ↓ Diversity ↑ Latency(s)↓ PPL ↓

FMM

in-batch
greedy 21.95 23.42 15.29 10.71 57.92 0.94 16.48

nucleus 23.17 4.17 0.92 0.29 94.67 0.84 78.20

pre-batch
greedy 22.28 26.90 20.07 16.29 48.91 0.95 9.02

nucleus 20.59 4.62 1.07 0.35 94.03 0.88 56.28

generation
greedy 22.87 31.17 23.82 19.55 42.19 1.20 6.34

nucleus 20.33 4.35 1.01 0.31 94.39 1.06 49.51

corpus-retrieval
greedy 21.98 31.47 24.39 20.26 41.32 1.12 6.40

nucleus 20.52 4.36 1.00 0.32 94.38 1.08 51.60

self-retrieval
greedy 21.65 31.33 24.15 20.00 41.67 1.15 6.39

nucleus 20.63 4.37 1.00 0.35 94.34 1.04 49.93

self-retrieval + generation
greedy 21.25 30.89 23.73 19.57 42.40 1.16 6.62

nucleus 20.34 4.24 0.96 0.29 94.57 1.04 52.27

N-words

in-batch
greedy 24.67 20.80 12.22 7.72 64.15 0.88 17.01

nucleus 24.24 4.76 1.16 0.40 93.76 0.81 68.25

pre-batch
greedy 23.98 19.58 13.63 11.02 61.80 1.16 14.60

nucleus 23.60 5.71 1.82 0.92 91.73 1.11 47.17

generation
greedy 24.99 26.72 19.95 16.41 49.03 0.94 8.51

nucleus 24.85 4.64 1.07 0.31 94.04 0.94 50.65

self-retrieval
greedy 24.83 27.21 20.23 16.54 48.46 0.96 8.13

nucleus 24.51 4.57 1.05 0.33 94.12 0.94 51.85

self-retrieval + generation
greedy 25.69 27.77 20.80 17.08 47.44 0.99 8.03

nucleus 24.34 4.59 1.03 0.28 94.16 1.00 51.38

N-ids

in-batch
greedy 23.96 18.63 10.30 6.22 68.44 0.81 21.53

nucleus 23.17 4.77 1.18 0.43 93.71 0.70 81.06

pre-batch
greedy 23.66 19.81 13.96 11.36 61.16 1.12 14.83

nucleus 22.84 5.17 1.52 0.67 92.77 0.92 54.52

generation
greedy 23.91 28.12 21.45 17.82 46.40 0.99 8.07

nucleus 24.50 4.41 0.97 0.29 94.38 0.96 53.98

self-retrieval
greedy 23.64 27.29 20.33 16.49 48.38 1.02 8.36

nucleus 23.85 4.43 0.94 0.27 94.41 0.88 55.76

self-retrieval + generation
greedy 24.85 27.85 21.04 17.36 47.08 1.01 8.21

nucleus 23.91 4.41 0.96 0.28 94.40 0.98 53.03

Table 9: The automatic evaluation on different negative samples with greedy and nucleus sampling (top-p: 0.95)

decoding algorithms on the WikiText103 dataset. The constructions of training samples and negative phrases have a

significant influence on the generated text.



Model Decoding MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 ↓ Diversity ↑ Latency(s)↓ PPL ↓

Transformer w/o FT
greedy 22.97 13.36 9.69 7.84 72.12 1.03 3.21

nucleus 24.15 4.05 1.62 0.80 93.64 1.05 31.48

Transformer w/ FT
greedy 23.06 9.74 6.45 5.00 80.21 1.02 3.54

nucleus 25.12 4.36 1.73 0.87 93.17 1.08 14.94

RETRO
greedy 19.07 13.19 9.34 7.66 72.68 5.72 3.78

nucleus 21.26 3.30 1.18 0.55 95.03 5.54 57.40

KMM-LM∗ greedy 23.32 - - - 19.85 - -

nucleus 24.75 - - - 94.60 - -

CoG
greedy 19.46 9.29 5.68 4.24 81.93 1.39 6.74

nucleus 24.45 4.57 1.58 0.72 93.25 0.89 32.01

GPT+MWT
greedy 24.55 11.59 7.34 5.46 77.45 1.10 5.38

nucleus 22.68 3.15 1.01 0.39 95.49 1.16 68.55

Ours
greedy 26.35 9.26 5.21 3.52 82.99 1.09 7.61

nucleus 24.80 3.63 1.17 0.48 94.78 0.93 60.70

Table 10: The automatic evaluation on LawMT. We directly retrieve 512 documents for each sample in this

experiment. Our proposed model even outperforms the Transformer further fine-tuned on the LawMT corpus.

Negative Samples Decoding MAUVE ↑ Rep-2 ↓ Rep-3 ↓ Rep-4 ↓ Diversity ↑ Latency(s)↓ PPL ↓

FMM

pre-batch
greedy 23.65 9.39 5.00 3.03 83.48 0.90 13.86

nucleus 22.73 4.82 1.87 0.85 92.60 0.84 68.31

pre-batch
greedy 25.00 8.71 4.76 3.16 84.20 0.98 8.26

nucleus 23.19 3.71 1.19 0.50 94.66 0.83 60.34

generation
greedy 22.87 11.00 6.76 4.85 78.96 1.26 6.17

nucleus 22.50 3.50 1.13 0.48 94.95 1.07 65.26

Retrieval-samples
greedy 23.00 10.45 6.36 4.53 80.06 1.21 6.11

nucleus 23.24 3.43 1.01 0.46 95.07 1.02 68.26

self-retrieval
greedy 23.41 10.98 6.80 4.92 78.89 1.20 6.11

nucleus 23.22 3.48 1.05 0.43 95.10 0.98 67.14

self-retrieval + generation
greedy 24.15 10.50 6.31 4.49 80.08 1.22 6.24

nucleus 22.55 3.40 1.16 0.53 94.98 1.04 69.40

N-words

in-batch
greedy 24.27 10.07 5.31 3.16 82.47 0.86 15.28

nucleus 25.48 5.36 2.12 1.00 91.71 0.80 61.90

pre-batch
greedy 26.15 6.53 3.11 1.92 88.82 0.61 14.40

nucleus 25.15 4.07 1.41 0.61 94.00 0.53 45.79

generation
greedy 26.35 9.26 5.21 3.52 82.99 1.09 7.61

nucleus 24.66 3.53 1.16 0.48 94.89 0.92 62.58

self-retrieval
greedy 23.65 8.92 4.88 3.29 83.87 1.04 8.05

nucleus 24.71 3.54 1.09 0.42 95.00 0.81 62.51

self-retrieval + generation
greedy 26.35 9.26 5.21 3.52 82.99 1.09 7.61

nucleus 24.80 3.63 1.17 0.48 94.78 0.93 60.70

N-ids

in-batch
greedy 25.77 9.12 4.44 2.47 84.70 0.81 17.49

nucleus 26.04 5.19 2.06 0.95 91.98 0.70 66.18

pre-batch
greedy 25.08 6.70 3.14 1.87 88.68 0.62 14.49

nucleus 23.93 4.25 1.46 0.65 93.74 0.43 47.94

generation
greedy 22.55 9.24 5.21 3.55 82.98 1.04 8.03

nucleus 23.14 3.59 1.14 0.49 94.85 0.85 61.89

self-retrieval
greedy 24.63 9.46 5.43 3.71 82.44 1.05 7.86

nucleus 24.19 3.58 1.11 0.44 94.94 0.78 63.87

self-retrieval + generation
greedy 23.18 9.31 5.25 3.59 82.85 1.07 7.57

nucleus 24.63 3.57 1.10 0.46 94.93 0.87 60.32

Table 11: The automatic evaluation on different negative samples with greedy decoding and nucleus sampling(top-p:

0.95) on the LawMT dataset.



Settings MAUVE ↑ Diversity ↑ Latency(s)↓ PPL ↓

Ours(70) 25.27 46.11 1.03 7.78

Ours(70) + real-time 24.42 47.05 1.31 7.99

Ours(100) 25.69 47.44 0.99 8.04

Table 12: The results of real-time adaptability. (x) represents that we construct dynamic vocabulary with x% of P

and real-time denotes the real-time scenarios.

required to generate text of the same number of

tokens after being tokenized by GPT-2.

Despite the addition of 65,536 phrases (more

than 50,257 tokens in GPT-2), our model can still

save a significant amount of FLOPs compared to

the baseline (phrase number = 0 in this table).

Phrase num FLOPS (Rel) (T) Avg Tokens Memory (Rel) (GB)

0 4.07(1×) 128 1.2411(1.00×)

32 2.63(0.65 ×) 88 1.2412(1.00 ×)

128 2.06(0.51 ×) 98 1.2415(1.00 ×)

2048 2.12(0.52 ×) 95 1.2529(1.01 ×)

8192 1.98(0.49 ×) 96 1.2880(1.04 ×)

16384 2.39(0.59 ×) 89 1.3349(1.08 ×)

65536 2.64(0.65 ×) 73 1.6161(1.30 ×)

Table 13: The impacts of dynamic Vocabulary on

FLOPs and Memory occupation.

The following is a theoretical analysis.

Memory Overhead. The additional memory

overhead mainly involves the memory occupation

of the dynamic phrase encoder and the phrase em-

bedding. The former is fixed and the latter is lin-

early related to the number of new phrases added.

Assuming that the memory occupation of phrase en-

coder and language model is Mp and Ml separately,

then the proportion of additional memory overhead

is as follows: Mp+p∗d∗4B/(Mp+p∗d∗4B+Ml).
p is the number of newly added phrases and d de-

notes the dimension of token embeddings. There-

fore, different sizes of language models lead to

varying overheads and the overhead is trivial when

choosing a larger model, such as Tinyllama.

Computational cost. Compared to the Trans-

former, our proposed model requires additional

computation on output embeddings during one-step

generation: 2pdn (n represents the sentence length).

Since phrase embeddings can be obtained offline,

this item is excluded from the computational cost.

The computational cost of a single forward prop-

agation is 2(n(V + p)d+ (24nd2 + 4nd)L). And

V is the vocabulary size of the language model and

L notes the layer numbers.

Therefore, the percentage of additional compu-

tational resources for one forward propagation is

p/(V + p+ (12d+ 2n)L).
When the dynamic phrase encoder is set as

GPT2(124M) and the Language model is initial-

ized with Tinyllama(1.1B), then the percentage of

additional memory and computational resources is

approximately 10

Although our model will increase minor com-

putational costs on one-step generation, more than

one forward process can be saved when generating

a phrase with two or more tokens.

F Case Study

In this section, we present some generated exam-

ples of our proposed model and GPT-2. As illus-

trated in Figure 4 and 5, it can be observed that

the generations of our model are more informative

and more diverse than those of GPT-2. For exam-

ple, as shown in Figure 4, our content introduces

the television series played by Boulter and the ac-

tors co-played with Boulter while GPT-2 merely

repeats the TV series ªThe Billº. Moreover, Figure

5 presents that the generated text from our proposed

model describes richer features about each series

than GPT-2.

G GPT-4 Evaluation

Although human evaluation is considered the gold

standard for assessing human preferences, it is

slow and costly. Zheng et al. (2023) have demon-

strated that strong LLMs, such as GPT-4, can match

most human preferences well , achieving over 80%
agreement, which is the same level of agreement

between humans. Therefore, LLM-as-a-judge is

an interpretable approach to approximating human

preferences. We random sample 100 cases and

evaluate the results of the Baselines and our model.

GPT-4 is asked to evaluate the generated texts by

considering fluency, coherence, informativeness,

and grammar. Owing to GPT4’s sensitivity to the

order of the two candidate sentences (Wang et al.,

2023), we adhere to the approach employed in



The Generation of our Proposed Model
He also appeared in the television series The Bill in 2003. Boulter has previously worked with actors such as John Barrymore,

Ben Willbond, and John Barrymore, and has appeared in numerous television series, including The Bill, The Hound of the 

Baskervilles, The Bill, and The Bill & Wally in the Series. He has also appeared in the television series The Bill, the television 

series The Bill, and the television series The Bill & Wally in the Series. He has also appeared in the television series The Bill, 

the television series The Bill, and the television series The Bill & the TARDIS. He has also

Robert Boulter is an English film, television and theatre actor. He had a guest @-@ starring role on the television series The 

Bill in 2000.

He has appeared in several television series, including The Bill, The Bill 2, The Bill 3, The Bill 4, The Bill 5, The Bill 6, The 
Bill 7, The Bill 8, The Bill 9, The Bill 10, The Bill 11, The Bill 12, The Bill 13, The Bill 14, The Bill 15, The Bill 16, The Bill 

17, The Bill 18, The Bill 19, The Bill 20, The Bill 21, The Bill 22, The Bill 23, The Bill 24, The Bill 25, The Bill 26, The Bill 

27, The Bill 28, The Bill 29, The Bill 30

Case Input

The Generation of GPT-2

Figure 4: A comparation between texts generated by our proposed model and GPT-2. The tokens highlighted in

blue are from dynamic vocabulary while others are from fixed token ones.

1932 by Marvell Press, and were followed by a series of short stories, Four Elegies, in March 1932 by The Times. The first, A

City Sunset, describes a young woman who is impressed by the beauty of the city and the beauty of the sky. In theme, the 

woman is inspired by the beauty of the sky and thinks that she can make it beautiful by ating the sky with her own mind and 

by the power of her imagination. The second, A City Sunset, describes a woman who is inspired by the beauty of the sky and 

the power of her imagination. The third, A Vision, is a short story about

The origins of Imagism are to be found in two poems, Autumn and A City Sunset by T. E. Hulme. These were published in 

January

1891, and were followed by a series of poems, Autumn and A City Sunset, in which Hulme's poems were the first to be 

published. The poems were published in the same year as the first of the two poems, Autumn and A City Sunset, and were 

followed by a series of poems, Autumn and A City Sunset, in which Hulme's poems were the first to be published. The poems 

were published in the same year as the first of the two poems, Autumn and A City Sunset, and were followed by a series of 

poems, Autumn and A City Sunset, in which Hulme

Case Input

The Generation of our Proposed Model

The Generation of GPT-2

Figure 5: A comparation between texts generated by our proposed model and GPT-2. The tokens highlighted in

blue are from dynamic vocabulary while others are from fixed token ones.

You are a helpful and precise assistant for checking the quality of the text.

[Prefix]

{prefix}

[The Start of Assistant 1's Generation]

{Generation_1}

[The End of Assistant 1's Generation]

[The Start of Assistant 2's Generation]

{Generation_2}

[The End of Assistant 2's Generation]

[System]

We would like to request your feedback on the performance of two AI assistants in response to the user prefix displayed 

above.Please rate the fluency, coherence, informativeness, and grammar. Each assistant receives an overall score on a 

scale of 1 to 10, where a higher score indicates better overall performance.

Please first provide a comprehensive explanation of your evaluation, avoiding any potential bias and ensuring that the 

order in which the responses were presented does not affect your judgment. Then, output two lines indicating the scores 

for Assistant 1 and 2, respectively.

Output with the following format:

Evaluation evidence: <your evluation explanation here>

Score of the Assistant 1: <score>

Score of the Assistant 2: <score>

Figure 6: The GPT-4 evaluation template with three slot {prefix}, {Generation_1} and {Generation_2}.



Wang et al. (2023) and determine the final result

by calculating the average of the outcomes from

interchanging the order of the candidate sentences.

Figure 6 shows the detailed prompt used

for GPT-4. Despite the template emphasizing

that the order should not affect the results (red

text), large language models still exhibit a sig-

nificant positional bias. Therefore, for each

triplet (prefix, <generation_1>, <generation_2>),

we include another corresponding triplet (prefix,

<generation_2>, <generation_1>). This is done to

mitigate the impact of the order of the two genera-

tions on GPT-4 evaluation.

Table 14 is the full results of our evaluation using

GPT-4. It can be seen that our model is capable of

producing generations that are comparable or even

superior to the baselines.

Comparison (VS) Better No Prefer Worse

WikiText103

Transformer 0.61 0.05 0.34

MWT 0.58 0.02 0.40

CoG 0.58 0.08 0.34

LawMT

Transformer 0.46 0.02 0.52

MWT 0.67 0.07 0.26

CoG 0.50 0.05 0.45

Table 14: GPT-4 evaluation on WikiText-103. Due to

the sensitivity of GPT-4 to the order of two candidates,

we got the final result by calculating the average scores

by changing the order of the two candidates.

H Sequence Compression On LawMT

Model NLS UTF-8 Bytes

WikiText103

Transformer 127.72 4.28

MWT 114.84 4.77

Ours 101.38 5.54

LawMT

Transformer 128.79 5.22

MWT 124.94 5.39

Ours 105.38 6.53

Table 15: Compression on WikiText-103 and LawMT.

Our model compresses text in a larger margin than

MWT in the specific domain.

Analogous to the section 3.2, we calculate the

compression ratio of LawMT. The conclusion

aligns with those from section 3.2, indicating that

our model could yield the highest information den-

sity per token. And for an equal number of to-

kens, our model encompasses a longer effective

text length.
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